行业动态

聚焦行业动态,洞悉行业发展

小型真空熔炼炉有哪些优点
发布时间:2021-03-11   浏览:1889次

  小型真空熔炼炉有哪些优点

  小型真空熔炼炉的主要优点是:

  1、有利于排除吸附气体,对促进烧结后期的收缩作用明显。

  2、真空熔炼炉对硅,铝,镁,钙等杂质或其氧化物的排除,起到提纯材料的作用。

  3、可改善液相烧结的润湿性,有利于烧结过程中的收缩和改善合金的组织结构。

小型真空熔炼炉有哪些优点

  4、是理想的惰性气氛,当不宜用其他还原性或惰性气体时,或者对容易出现脱碳,渗碳的材料,均可采用熔炼炉。

  5、小型真空熔炼炉减少气氛中的有害成分(水,氧,氮等)对产品的玷污。例如,电解氢中的含水量要求降-40℃较为困难;而真空烧结时,真空度只要在数百Pa就相当于含水量为-40℃。6、小型真空熔炼炉熔化速度快,加装保温套温度可达到2100℃2·可选配程序升温控温,根据您的工艺要求设定好升温或者降温曲线,真空熔炼炉会自动按照此工艺进行加热或降温。

  7、带倾倒装置,可将熔好的试样倾倒在事先准备好的锭模内,浇注出您想要的样品形状。

  8、小型真空熔炼炉可在多种气氛条件下熔炼:空气状态下、保护气氛条件下和高真空条件下熔炼,买一种设备,实现多种功能;程度节约您的成本。

  9、可选配二次加料系统:真空熔炼炉可实现在熔化过程中加入其他元素,方便您制备出多元化样品。

  10、真空熔炼炉炉体全不锈钢结构,并带水冷,保证外壳温度低于35℃,保护您的人身安全。

免责声明:本站部分图片和文字来源于网络收集整理,仅供学习交流,版权归原作者所有,并不代表我站观点。本站将不承担任何法律责任,如果有侵犯到您的权利,请及时联系我们删除。

相关推荐

19 October 2020
真空烧结炉恒温区均匀性的测定

真空烧结炉恒温区均匀性的测定

  真空烧结炉恒温区均匀性的测定   真空烧结炉的真空热处理炉恒温区均匀性,是保证热处理工艺需求、保证热处理产品品质、提高生产率的重要保障。发热元件布置,通常有圆形布置和矩形布置。   真空烧结炉在真空状态下加热,热传导方式只有辐射。恒温区的测量,通常是在空载状态下进行的。恒温区的存在,是为了保证热处理工艺需要,保证热处理产品品质,提高生产率。恒温区的判断标准很多,不同行业按照各自行业需求,判断各自的恒温区。   每一台真空烧结炉通常都是按照恒温区尺寸要求设计的,合格的真空热处理炉,都得满足恒温区尺寸要求。炉内温度均匀性,是指炉内设计恒温区边缘各测试点zui高和zui低与控制点的温度偏差。为了保证工艺温度和实际记录温度的一致性,在选择控温热电偶时,按照热电偶的测温范围应尽量选择误差小、精度等级高的;其次选择带冷端补偿的控制仪表,以保证工作偶与炉内温度一致;再次,应当尽可能地将控温热电偶安装在炉内温度近似于平均炉温值的地方,以便正确地反映真空热处理炉的恒温区的均匀性。   通常,真空甩带炉恒温区均匀性的测定装置:测温热电偶、补偿导线、检测仪表(如温度巡检仪)、测温架等组成。以上就是今天的内容分享,如果您有需要咨询的,欢迎拨打电话。

23 February 2024
深入了解石墨化炉的工作原理与关键技术

深入了解石墨化炉的工作原理与关键技术

  深入了解石墨化炉的工作原理与关键技术  石墨化炉,作为现代材料制备领域的关键设备之一,广泛应用于石墨材料、碳纳米材料以及复合材料的制备过程中。其独特的工作原理和关键技术使得石墨化炉在材料科学领域占据重要地位。本文将详细探讨石墨化炉的工作原理、关键技术以及其在不同领域的应用,旨在为读者提供全方面而深入的了解。  一、石墨化炉的工作原理  石墨化炉的工作原理主要基于高温处理使碳材料发生石墨化转变的过程。在石墨化炉中,通过加热使碳材料达到高温状态,进而发生结构转变,终得到石墨化产物。  加热过程:石墨化炉采用电热元件或高频感应加热等方式,将碳材料加热至高温。这一过程中,加热速度、加热温度和加热时间等参数对石墨化效果具有重要影响。  石墨化转变:当碳材料达到高温状态时,其内部的非石墨化碳结构逐渐转变为石墨化结构。这一转变过程中,碳原子重新排列形成层状结构,从而提高材料的导电性、热稳定性和机械性能。  二、石墨化炉的关键技术  石墨化炉的关键技术主要包括加热技术、气氛控制技术、温度控制技术以及炉体结构设计等。  加热技术:加热技术是石墨化炉的核心技术之一。效率高、均匀的加热方式可以确保碳材料快速达到所需的石墨化温度,从而提高石墨化效率和质量。  气氛控制技术:石墨化过程中,气氛的控制对石墨化效果至关重要。通过调节炉内的气氛组成,可以抑制或促进特定的化学反应,从而得到所需的石墨化产物。  温度控制技术:温度是石墨化过程中的关键参数之一。精确的温度控制可以确保碳材料在好的温度范围内发生石墨化转变,避免温度过高或过低导致的结构缺陷。  炉体结构设计:炉体结构设计对于石墨化炉的性能和稳定性具有重要影响。合理的炉体结构设计可以提高炉内的温度均匀性、气氛稳定性和加热效率,从而确保石墨化过程的顺利进行。  三、石墨化炉的应用领域  石墨化炉在多个领域具有广泛的应用价值,特别是在新材料制备、能源储存与转换、航空航天等领域。  新材料制备:石墨化炉可用于制备高质量的石墨材料、碳纳米材料以及复合材料,为新材料领域的研究和开发提供有力支持。  能源储存与转换:石墨化材料在锂离子电池、超级电容器等能源储存与转换器件中具有重要的应用。石墨化炉为这些器件的制备提供了关键技术和设备支持。  航空航天:石墨化材料因其优异的性能在航空航天领域具有广泛的应用。石墨化炉为航空航天材料的制备提供了可靠的技术保障。  四、总结与展望  通过对石墨化炉的工作原理与关键技术的深入了解,我们可以看到这一设备在材料制备领域的独特地位和重要作用。随着科技的不断进步和创新,石墨化炉有望在材料科学和工业界发挥更大的作用。未来,我们可以期待石墨化炉在设备性能提升、工艺优化以及智能化等方面取得更多突破,为人类社会的科技进步和产业发展做出更大贡献。